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a b s t r a c t

The study of particle coagulation and sintering processes is important in a variety of
research studies ranging from cell fusion and dust motion to aerosol formation applica-
tions. These processes are traditionally simulated using either Monte-Carlo methods or
integro-differential equations for particle number density functions. In this paper, we pres-
ent a computational technique for cases where we believe that accurate closed evolution
equations for a finite number of moments of the density function exist in principle, but
are not explicitly available. The so-called equation-free computational framework is then
employed to numerically obtain the solution of these unavailable closed moment equa-
tions by exploiting (through intelligent design of computational experiments) the corre-
sponding fine-scale (here, Monte-Carlo) simulation. We illustrate the use of this method
by accelerating the computation of evolving moments of uni- and bivariate particle coag-
ulation and sintering through short simulation bursts of a constant-number Monte-Carlo
scheme.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Simulation of particle coagulation and sintering processes has been widely employed in chemical science and engineering
to explore and understand particle formation phenomena such as colloidal aggregation, cell fusion and aerosol condensation.
Models for such particle processes typically consider only one (volume) or two (volume and surface area) particle states (e.g.
[1,2]). Particles aggregate, thus forming a new particle with larger volume; each particle may also experience restructuring,
conserving its volume while reducing its surface area. Particle breakage may be also involved.

Conventional simulation techniques generally fall in two categories. The first one involves closed-equation descriptions
for the evolution of particle distributions. Population Balance Equations (PBE) of particle number densities have long been
used to describe the evolution of particle aggregation-breakage processes [3,4]. Except for some special situations, analytical
solutions of these PBEs are not available. Numerical methods must be used to discretize and solve such equations, a typically
computationally intensive task. Since normally only a finite number of low-order moments are of primary interest (e.g. for
comparison with experiments) the Quadrature Method of Moments (QMOM) has been used in recent years to discretize and
solve such moment equations [5–7]. The computational effort for solving QMOM descriptions is then dramatically reduced,
compared to solving the full PBE, since the number of relevant degrees of freedom is reduced. A computational alternative to
. All rights reserved.
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QMOM is the Direct Quadrature Method of Moments (DQMOM) [8,9], which solves directly for the quadrature weights and
abscissas involved in the moment approximation.

The other category of simulation techniques involves Monte-Carlo (MC) simulation. It further divides in two branches:
constant-volume MC (CVMC) [10–12] and constant-number MC (CNMC) [2,13]. In both MC methods, an ensemble of parti-
cles is used to mimic the real evolution of the coagulation and/or sintering process. At some reporting time steps, coarse-
grained quantities such as moments of volume (for the univariate case) or mixed moments of volume and surface area
(for the bivariate case) are reported, obtained from the average of the ensemble of realizations. For the CVMC, every time
a pair of particles is selected to aggregate, this coagulation event results in the net loss of one particle. For a total initial num-
ber N0 of particles, the simulation process will terminate after N0 � 1 coagulation steps. A drawback of this MC method is,
therefore, the continuously decreasing accuracy due to the depletion of the particle array. In [2,13], a constant-number
Monte-Carlo scheme was suggested as an alternative to CVMC. This method refills the particle array with one new particle
at each coagulation step, thus retaining a constant number of particles. It was demonstrated that this scheme can efficiently
reproduce analytical solutions [13] as well as QMOM-based computations of particle distribution moments [6].

In quadrature-based methods [7–9], once closed equations for moments or corresponding quadrature points are avail-
able, they can be solved efficiently using established ODE solvers. For cases in which such closed equations cannot be derived
(e.g. when the fine-scale simulator is a molecular dynamics or a kinetic Monte-Carlo one for which no explicit kernel exists)
we propose the application of the Equation-Free framework [14,16,17]; this framework enables fine-scale simulators to effi-
ciently evolve coarse-grained observables, for which the corresponding macroscopic equations are not available in closed
form. In this paper, we demonstrate how to circumvent the explicit derivation of such closed equations, and use instead
a coarse-grained combination of the QMOM and MC simulation methods. We will ‘‘wrap” this computational approach
around a CNMC fine-scale simulator in order to accelerate the computation of temporal evolution of aerosol coagulation
and sintering. For these examples, explicit kernels do exist, and QMOM equations can be written down in closed form;
we do not make use of these equations – instead we allow our equation-free procedure to solve them without writing them
down. The efficiency of the proposed methodology is then compared to the direct simulation of the MC scheme and it is
shown that the accuracy of the obtained moments is comparable to the results produced by direct MC simulations (and
to those produced by the explicit QMOM equations). This subsequent comparison of the equation-free results with the ex-
plicit QMOM equation results validates the approach and shows evidence of (modest) acceleration – this was the reason for
the illustrative example selection. We stress, however, that the real potential of the approach will be in cases where a phys-
ical simulator (e.g. a molecular dynamics one) is available but no accurate closed coagulation/sintering kernel is known.

The computational implementation involves the repeated generation of particle distributions consistent with few lower
order moments, whose dynamics we are interested to accelerate. In this context we describe two different approaches for the
generation of particle distributions (lifting): a d-lifting and a maximum entropy (maxent) lifting. We demonstrate that, for the
examples chosen, non-uniqueness of the generated particle distributions does not have an impact on the lower order mo-
ment evolution during the course of the computations. We reiterate that our algorithms can, in principle, be wrapped around
any fine-scale simulator of the process, such as a molecular dynamics or a Brownian dynamics one.

The paper is organized as follows. In Section 2, we briefly review existing simulation methods for particle coagulation and
sintering processes. Section 3 describes our equation-free framework, through which coarse-grained computations based on
a fine-scale simulator can be performed; in our case, the fine-scale simulator is a CNMC one. Numerical results are presented
and discussed in Section 4, followed by conclusions and a brief discussion in Section 5.

2. Existing simulation methods

2.1. Population Balance Equations

The continuous equation for the evolution of the number density of particles in terms of the particle volume, when only
aggregation is considered, was first derived in [3]. It is given by:
@nðv; tÞ
@t

¼ 1
2

Z v

0
bðv � v 0;v 0Þnðv � v 0; tÞnðv 0; tÞdv 0 � nðv ; tÞ

Z 1

0
bðv; v 0Þnðv 0; tÞdv 0; ð2:1Þ
where nðv ; tÞ is the number density of particles as a function of the particle volume and bðv;v 0Þ is the coagulation kernel
expressing the rate at which particles with volume v and v 0 combine to form a new particle with volume v þ v 0.

If particles also experience restructuring of their surface area after each coagulation event, Eq. (2.1) can be written in a
bivariate form [18,6]:
@nðv; a; tÞ
@t

¼ 1
2

Z v

0

Z a

0
bðv � v 0;v 0; a� a0; a0Þnðv � v 0; a� a0; tÞnðv 0; a0; tÞdv 0da0

� nðv ; a; tÞ
Z 1

0

Z 1

0
bðv ;v 0; a; a0Þnðv 0; a0; tÞdv 0da0 � @

@a
ð _anðv ; a; tÞÞ; ð2:2Þ
where _a is the time rate of change of particle surface area due to sintering (restructuring). This rate is often modeled as a
linear form [1]:
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_a ¼ � 1
tf
ða� aminÞ; ð2:3Þ
where amin ¼ pð6v=pÞ2=3 is the area of the fully compacted (spherical) particle and tf is a characteristic time scale for particle
sintering.

Modifications of the above equations involve adding terms related to fragmentation. Since this paper only deals with par-
ticle coagulation and sintering, we do not consider such additional terms; the interested reader may refer to [19] for further
information. We reiterate, however, that including additional terms in the simulation does not alter the ‘‘wrapper” structure
of our acceleration algorithms.

2.2. Quadrature Method of Moments

For the CNMC univariate case, the moments of the volume-based distribution function are defined as:
Mk ¼
Z 1

0
vknðvÞdv: ð2:4Þ
If the integral on the right-hand side of the above equation is approximated by quadrature, i.e.:
Mk ¼
Z 1

0
vknðvÞdv �

XN

i¼1

xivk
i ; ð2:5Þ
where xi and v i are the corresponding weights and abscissas, then Eq. (2.1) can be approximated by coupled moment equa-
tions [5]:
dMk

dt
¼ 1

2

XN

i¼1

XN

j¼1

ðv i þ v jÞk � vk
i � vk

j

h i
bðv i;v j; ai; ajÞxixj: ð2:6Þ
The computation of the quadrature weights and abscissas on the right-hand-side of the above equations can be done by
building a sequence of polynomials orthogonal to the unknown distribution (for which the only available information con-
sists of the values of a few of its lower order moments). The abscissas are the roots of the highest-order polynomial and the
values of the weights arise as the solution of a linear system constructed from the values of the moments [20–22]. A robust
computation of the quadrature points at each temporal integration step can be obtained through the Product Difference
method [21,5,7]. The approximation of the quadrature points is determined by the solution of an eigenvalue problem, involv-
ing a real symmetric tridiagonal matrix [23] (see also the subroutines ORTHOG and ZRHQR in [22]). ORTHOG requires as in-
put the modified moments of the distribution nðvÞ given by:
mk ¼
Z 1

0
pk

j nðvÞdv ; ð2:7Þ
where the polynomials pj are generated by the recurrence relation:
p�1ðvÞ � 0;
p0ðvÞ � 1;
pjþ1ðvÞ ¼ ðv � ajÞpjðvÞ � bjpj�1ðvÞ; j ¼ 0;1;2; . . .

ð2:8Þ
In our computations, we set aj; bj ¼ 0, so that the modified moments mk are the moments of the distribution nðvÞ given by
(2.4).

In the bivariate situation, the distribution function is expressed over the volume v and surface a of particles. The moments
of the bivariate distribution are defined as:
Mkl ¼
Z 1

0

Z 1

0
vkalnðv ; aÞdv da: ð2:9Þ
When expressing the mixed moments of volume and surface area in terms of a quadrature form, i.e.:
Mkl ¼
XN

i¼1

vk
i al

ixi; ð2:10Þ
Eq. (2.2) reads [6]:
dMkl

dt
¼ 1

2

XN

i¼1

XN

j¼1

ðv i þ v jÞkðai þ ajÞl � vk
i al

i � vk
j al

j

h i
bðv i; v j; ai; ajÞxixj þ l

XN

i¼1
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i al�1

i
_aja¼ai

xi; ð2:11Þ
where N is the number of quadrature weights and abscissas.
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Fractional, rather than integral, moments are frequently chosen to improve the numerics (to avoid placing too much
emphasis on the tail of distribution) [6]. The Product Difference algorithm is applicable to the univariate case. For the bivar-
iate case, quadrature points – given the values of mixed moments – are obtained by solving to zero (using the conjugate gra-
dient method) a minimization problem [6]. For the case of a 36 fractional moment expansion, including all moments of order
k
3 ;

l
3 with k; l ¼ 0; . . . ;5 using 12-point quadrature ððai;v i;wiÞ; i ¼ 1; . . . ;12Þ, the corresponding objective function is:
Jðv i; ai;wiÞ ¼
X5

k¼0

X5

l¼0

PN
i¼1v

k=3
i al=3

i xi �Mk=3;l=3

Mk=3;l=3

" #2

: ð2:12Þ
2.3. Constant-number Monte-Carlo simulation

Direct, long-time Monte-Carlo simulations can be performed in order to obtain the moment dynamics of coagulation/sin-
tering processes. Since the computational requirements for an efficient study of MC simulations are very high, we resort to
alternative techniques, such as the equation-free framework [14,16,17], which wraps around the particle-based simulator
and can enable the acceleration of temporal computations. The computational advantages of the equation-free method
should be compared to full simulations using particle-based (Monte-Carlo, or possibly molecular dynamics) simulators.
We will focus only on constant-number Monte-Carlo simulation in this paper, and illustrate our coarse-graining approach
by accelerating its time-marching.

In CNMC a random pair of particles, ði; jÞ, and a random real number p with uniform distribution are chosen. A coagulation
event takes place whenever p < bðv i;v jÞ=bmax, where bmax is the largest coagulation rate amongst all pairs of particles. Vol-
umes and surface areas of the two coagulating particles are added and assigned to one of the particles. The vacancy is then
filled with a particle randomly chosen from the particle array. The inter-event time increment is computed as [13]:
Dtj ¼
2V0

Nphbiji
1

Np

Np

Np � 1

� �j

; ð2:13Þ
where V0 is the initial total volume of all particles, Np the constant number of particles, j the index of the coagulation event,
and hbiji is the average value of coagulation rates over all particle pairs. It can be seen that V0=Np is simply the first-order
moment of volume M1. If sintering is also considered, we need to integrate (2.3) over each such time step.
3. Coarse-grained QMOM–MC computation

The equation-free framework [14,16,17] for modeling and computation of complex/multiscale systems gives rise to a
class of algorithms that combine short bursts of fine-scale simulation with traditional continuum numerical methods. Link-
ing between different levels of modeling involves a coarse time stepper: starting from initial values of coarse-grained-level
observables (here, moments) of a fine-scale system, we lift these values to generate an ensemble of consistent fine-level
states (e.g. particle distributions). These fine-level states are then evolved forward in time through an inner simulation (here
CNMC). A short time later the coarse-grained observables (moments) are computed again from the fine states (from the new
particle distributions); this is the restriction step. This short-time evolution of moments, observed through the coarse time
stepper, can be used to estimate their temporal derivatives, which can then be incorporated into an outer numerical integra-
tion scheme (e.g. forward Euler, Runge–Kutta, etc.) to accelerate the numerical evolution of the coarse observables (mo-
ments). If a separation of time scales exists between different levels of system description (i.e., if the evolution of the
moments is significantly slower than individual particle coagulation/sintering events) the time step for this outer integration
can be chosen relatively large, so that the overall computational time is significantly less than that of full discrete event sim-
ulation. In effect, we are integrating the (unavailable) moment equations using the outer integrator scheme; yet the neces-
sary values of the time derivatives of the moments (e.g. if we were studying a constant volume model, the right-hand-sides
of (2.6) and (2.11)) are not obtained through function evaluations, but rather through short bursts of computational exper-
iments with the fine-scale CNMC code.

Since only a finite number of particles are generated in the discrete CNMC, an ensemble of replica copies of particle pools
must be averaged for reducing statistical noise. Note that, if accurate closed equations in terms of a finite number of mo-
ments exist, the evolution of these coarse observables should be, in principle, insensitive to particular realizations of lifting;
we will return to this issue while discussing our computational results below.

In this paper Coarse Projective Integration [24–26], – a particular equation-free technique – is employed, which aims at
decreasing the total CNMC computational time required for studying the dynamics of coagulation and sintering processes.
The implementation of the discrete event simulation was described in Section 2.3; equation-free computation employs two
steps that link this fine-scale simulator with coarse-level computation: restriction and lifting. The restriction step (computing
moments of a particle distribution) is trivial: if Np particles are employed at each simulation and particle m has volume vm

and area am then, e.g. for the bivariate case, the mixed moment Mkl is evaluated from:
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Mkl ¼
1

Np

XNp

m¼1

vk
mal

m

* +
; ð3:1Þ
where h i denotes the average over several replica copies of the stochastic simulation.
The lifting step (realizing particle distributions consistent with a number of prescribed moment values) is implemented in

two stages:

– Compute quadrature abscissas and weights corresponding to particular moments of the particle distribution. Moment
inversion algorithms based on Wheeler’s approach [27], using the subroutines ORTHOG and ZRHQR in [22] were
employed in this paper to perform the computation of the quadrature abscissas and weights for the univariate case. In
the bivariate case, the inversion of the mixed moments Mkl, involves the minimization of (2.12). At the beginning of
the simulation, for a d-function initial distribution, we used equally-weighted coincident points. During the coarse-
grained computation process, the quadrature points from the previous outer integration step can serve as the initial con-
dition for the next minimization. Details for the application of the minimization process can be found in [6].

– Generate d-function distributed particles from quadrature abscissas and weights (lifting). For instance, suppose a 12-
point quadrature ððv i; ai;wiÞ; i ¼ 1;2; . . . ;12Þ is used for the bivariate case. A random variable p with a uniform distribu-
tion Uð0;1Þ is first generated; then the particle is assigned volume and area ðvk; akÞ if

Pk�1
i¼1 wi < p <

Pk
i¼1wi. This process is

repeated until all Np particles are assigned values of volume and area (this procedure also applies to the univariate case).

An alternative approach to generating consistent microscopic realizations with a small number of moment values is based
on the Maximum Entropy (maxent) method (see, e.g. [28,29]). Details of the approach are briefly reported in the Appendix;
this generates a smoother approximate realization of the particle number density function, as compared to the d-function
based lifting. We observed that, for our illustrative example, the two lifting approaches gave essentially identical coarse re-
sults; this will be further discussed in Section 4.
4. Numerical results

In this section, we present coarse-grained simulations for two cases: a coagulation example, where the coarse variables
are univariate distribution moments (Section 4.2), and a coagulation-sintering example, where the coarse variables are
bivariate distribution moments (Section 4.3). Before production runs are carried out, however, it is important to test whether
the chosen finite number of moments in each case are sufficient to accurately describe the problem. In other words, we want
to test whether closed equations in terms of these chosen variables exist, even though we cannot explicitly derive them.

4.1. Testing the level of closure for univariate QMOM–MC

If the number of governing moments (that is, the level at which the moment equations close) has been chosen correctly,
the effect of initializing higher moments (moments of order higher than those chosen) in various different ways, should get
quickly forgotten as the simulation progresses. In other words, higher-order moments become quickly ‘‘slaved” to the gov-
erning ones (a phenomenon associated with separation of time scales, which is sometimes referred to as ‘‘healing” [15,16]).
This is practically tested by starting with a set of initial values of the lower (slow, governing) moments, and constructing
several distributions (performing several liftings) consistent with them; each such lifting has different values for the high-
er-order moments. The test consists of examining whether the lower (slow, governing) moment values at the end of a rel-
atively short fine-scale simulation are indeed insensitive to the details of the lifting procedure (alternatively, to the
initialization of the higher-order moments).

In these simulations a Brownian coagulation kernel is used [30,6]:
bðu;vÞ ¼ Kðu1=Df þ v1=Df Þðu�1=Df þ v�1=Df Þ: ð4:1Þ
Throughout this work, the values of the coefficients in the above kernel are taken as K ¼ 1 and Df ¼ 3. We choose six low
moments as our coarse variables, and set their initial values to Mi=3 ¼ 1; i ¼ 0;1; . . . ;5, corresponding to a three-point quad-
rature v1 ¼ 1; w1 ¼ 1; v2 ¼ 0; w2 ¼ 0; v3 ¼ 0; w3 ¼ 0. An ensemble of Np ¼ 10;000 particles are generated according to
this initial condition and evolved through t ¼ 0:3 by using the CNMC algorithm. Fractional moments are reported at succes-
sive steps t ¼ kdt; k ¼ 0;1; . . . ;300, where dt ¼ 0:001. For the purpose of noise reduction, 100 replica copies of particles
ensembles are averaged to estimate accurate values of fractional moments. The evolution is paused at time t ¼ 0:1 and
the values of the six leading moments are reported, and used to construct a three-point quadrature, i.e. to calculate the cor-
responding quadrature abscissas and weights.

We now proceed to our test. On the one hand, we continue the paused CNMC simulation in the time interval [0.1,0.3] and
report the ‘‘naturally evolved” values of the governing moments. On the other hand, we construct a realization of particles
with a volume distribution consisting of three d-functions, corresponding to the reported quadrature at t ¼ 0:1, and subse-
quently evolve this new distribution using the same coagulation dynamics. Fig. 1(a) shows trajectories of the six moments
during this test. Relative errors between the naturally evolved simulation (the ‘‘true” moments, Mtrue

i=3 ; i ¼ 0;1; . . . ;5), and
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Relative errors between six ‘‘true” moments and moments after d-lifting using three quadrature points. Blue lines: relative errors of moments; red lines:
2rM=Mtrue , where rM is the standard deviation of the noise in the moments estimated using 100 replica copies. (For interpretation of the references in color
in this figure legend, the reader is referred to the web version of this article.)
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those obtained after the d-lifting, Mlifting
i=3 ; i ¼ 0;1; . . . ;5, remain within 0.15% (Fig. 1(b)) in the time interval [0.1,0.3]. These

deviations are within the order of magnitude of the quantities 2rM=Mtrue, where rM is the standard deviation of the moments
M computed by using 100 direct CNMC replicas. This interval encompasses 96% of our realizations. This evidence strongly
supports our hypothesis of the existence of an accurate six-moment closure.

In addition to the moments themselves, the evolution of the time derivatives of the moments with and without d-lifting
are compared as well (Fig. 2(a)). Since the observed variation in the moment values across replicas is of the order of 10�3, a
relatively large time duration h ¼ 0:02 is used to estimate the temporal derivatives of moment evolution. The temporal
derivatives are estimated through a linear least-square fitting by using h=dtð¼ 20Þ moment values at equally spaced time
points with step dt. Relative errors of these derivatives are also shown to be of the order of the magnitude of the noise
(Fig. 2(b)).

The above results suggest that the evolution of the six moments and their temporal derivatives can be well approximated
by short bursts of CNMC coagulation dynamics consistently initiated through a d-lifting. This suggests that, over the time
scales we simulate, a closed description based on six fractional moments may indeed provide an accurate description.

What happens to the values of the higher-order moments, which were initialized differently? When the moments
ðMi=3; i ¼ 6;7; . . . ;19Þ are considered, we can see from Fig. 3(a) that their values will quickly approach their ‘‘true” (‘‘natu-
ral”) evolution values within a time interval of Dt ¼ 0:1. Fig. 3(b) displays the relative errors in their values, indicating that
these relative errors quickly become small compared to stochastic fluctuations. This corroborates our previous deduction: it
is, indeed, reasonable to believe that the evolution of the 20 moments, Mi=3; i ¼ 0;1;2; . . . ;19, can be well reproduced by
d-lifting using only six moments, Mi=3; i ¼ 0;1; . . . ;5. In other words, it appears that the higher-order moments become
relatively quickly slaved to the lower order ones; d-lifting based on only six moments or a three-point quadrature appears
adequate for equation-free acceleration of the computation here.
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web version of this article.)
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Having confirmed that six moments are adequate for an accurate closure, it is also natural to ask whether a smaller num-
ber of moments may suffice. To explore the possibility of using even fewer quadrature points to form a successful closure for
moment equations, we tried respectively employing two quadrature points to represent the four lowest-order moments and
one quadrature point for the two lowest-order moments at time t ¼ 0:1. Similarly to the case of three quadrature points, the
particle dynamics is initiated with distributions corresponding to d-liftings based on these reduced quadrature representa-
tions. The evolution of the relative error in the values of the six lowest-order moments are reported again in Fig. 4. It can be
concluded from these figures that the 4(2) lowest-order moments can be closed with 2(1) quadrature points. However,
higher-order moments are not well represented (see Fig. 5) in these two cases. Although there is still a trend for these
higher-order moments to return to their true trajectories, this return (‘‘healing”) takes place quite slowly compared to
the three-points case. Therefore, as far as the higher-order moments (up to M19=3) are concerned, one- or two-point
representations are not good options for implementing the d-lifting procedure and the three-point quadrature (or six lower
moments representation) has to be used.

Before we proceed to the actual results, two more points are worth addressing briefly. The first concerns the nature of the
kernel in (4.1). Notice that the coagulation rate resulting from this particular kernel does not depend on sintering; this is, of
course, an approximation, since Df ¼ 3 suggests that the coagulating particles have spherical shape. More complicated coag-
ulation kernels can be found in the literature (e.g. see [18]). These kernels account for the effect of sintering by allowing the
fractal dimension of an aggregate to depend on its surface area, which slightly modifies the effective collision radius. It is
important to note that these modifications do not affect in a significant way the mathematical form of the coagulation kernel,
and thus we will use the simpler kernel above to illustrate our computational methodology. Nonetheless, we reiterate that
our approach is not limited by the particular features of specific kernels and that it is especially designed for cases where
closed expressions (e.g. explicit kernels) for the coagulation rate are not available.

The second point concerns the selection of the appropriate h value for the time-derivative estimation as illustrated in
Fig. 6. As the value of h is reduced, the effect of noise becomes significant, so that detrimental fluctuations in the derivative
estimates may arise. The value of h cannot be very long either, since then linear fitting will lead to overly smoothened

estimates of the time derivatives. In Fig. 6, we depict the dependence of the estimated time derivative values,
dMtrue

5=3

dt , on
0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2 x 10−3

time

|M
lif

tin
g −M

tru
e |/M

tru
e

0 0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

time

|M
lif

tin
g −M

tru
e |/M

tru
e

a b

Fig. 4. Relative errors between six ‘‘true” moments Mi=3; i ¼ 0;1; . . . ;5 and moments after d-lifting at time t ¼ 0:1 by using (a) two quadrature points and
(b) one quadrature point. Blue lines: relative errors of moments; red lines: 2rM=Mtrue , where rM is the standard deviation of the moments obtained across
100 replica copies. (For interpretation of the references in color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Relative errors between 20 ‘‘true” moments and moments after d-lifting at time t ¼ 0:1 by using (a) one and (b) two quadrature points. Blue lines:
relative errors of moments; red lines: 2rM=Mtrue , where rM is the standard deviation of the moments obtained by taking 100 replica copies. (For
interpretation of the references in color in this figure legend, the reader is referred to the web version of this article.)
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the selection of the time step size h, where Mtrue
5=3 values are obtained from direct CNMC simulation. The appropriate h should

then be (a) not too long, in order to preserve accuracy in our computations and (b) not too short, in order to filter excessive
noise effects from the CNMC simulations. In this work, h was chosen in the range from 0.02 to 0.05. Other numerical
approaches (e.g. Richardson extrapolation [31] or maximum likelihood estimation techniques [32]) may be used to estimate
the moment temporal derivatives as well.

4.2. Coarse-grained simulation for univariate QMOM–MC

For the coarse-grained computation, 15 replica copies of Np ¼ 10;000 particles are used. Starting from the same initial
condition as above, fractional moments of volume are obtained through restriction at times t ¼ 0:01k; k ¼ 1;2; . . . ;10.
The moments, Mi=3; i ¼ 0;1; . . . ;5 at the last successive five steps are used to estimate the temporal derivatives dMi=3=dt
through least-squares fitting. The temporal derivative estimates are passed to a forward Euler scheme to extrapolate
moment evolution from t ¼ 0:1 over a large time interval Dte (e.g. Dte ¼ 0:1;0:2; 0:4). Then the lift-evolve-restrict-project
procedure is repeated. This procedure is schematically depicted in Fig. 7.
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Fig. 7. Schematic illustration of coarse projective integration for the univariate QMOM–MC computations. (For interpretation of the references in color in
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